

Welcome to Odoo new API guideline’s

Overview

	Record/Recordset and Model
	Model
	Inheritance

	Recordset

	Supported Operations

	Useful helpers

	The ids Attribute

	Record
	Displayed Name of Record

	Active Record Pattern

	Active Record Pattern Be Careful

	Chain of Browse_null

	Environment
	Modifing Environment
	Changing User

	Accessing Current User

	Fetching record using XML id

	Cleaning Environment Caches

	Common Actions
	Searching
	search

	search_read

	search_count

	Browsing

	Writing
	Using Active Record pattern

	From Record

	From RecordSet

	Many2many One2many Behavior

	Copy
	From Record

	From RecordSet

	Create

	Dry run

	Using Cursor

	Using Thread

	New ids

	Fields
	Field inheritance

	Field types
	Boolean

	Char

	Text

	HTML

	Integer

	Float

	Date

	DateTime

	Binary

	Selection

	Reference

	Many2one

	One2many

	Many2many

	Name Conflicts

	Fields Defaults

	Computed Fields

	Inverse

	Multi Fields

	Related Field

	Property Field

	WIP copyable option

	Method and decorator
	@api.returns

	@api.one

	@api.multi

	@api.model

	@api.constrains

	@api.depends
	View management

	@api.onchange
	View management

	Warning and Domain

	@api.noguess

	Introspection

Conventions and code update

	Conventions
	Snake_casing or CamelCasing

	Imports
	Model

	Fields

	Translation

	API

	Exceptions

	Classes

	New Exceptions classes
	RedirectWarning

	AccessDenied

	AccessError

	class MissingError:

	DeferredException:

	Compatibility

	Fields

	Default or compute

	Modifing self in method

	Doing thing in dry run

	Using Cursor

	Displayed Name

	Constraints

	Qweb view or not Qweb view

	Javascript and Website related code

	Compatibility
	Access old API

	How to be polite with old code base

	Unittest

	YAML

Indices and tables

	Index

	Module Index

	Search Page

Record/Recordset and Model

The new version 8.0 of OpenERP/Odoo introduce a new ORM API.

It intends to add a more coherent and concise syntax and provide a bi-directional compatibility.

The new API keeps its previous root design as Model and Record but now adds
new concepts like Environment and Recordset.

Some aspects of the previous API will not change with this release, e.g. the domain syntax.

Model

A model is a representation of a business Object.

It is basically a class that define various class know-how and fields that are stored in database.
All functions defined in a Model where previously callable directly by the Model.

This paradigm has changed as generally you should not access Model directly but a RecordSet see Recordset

To instantiate a model you must inherit an openerp.model.Model:

from openerp import models, fields, api, _

class MyModel(models.Model):

 _name = 'a.model' # Model identifer used for table name

 firstname = fields.Char(string="Firstname")

Inheritance

The inheritance mechanism has not changed. You can use:

class MyModelExtended(Model):
 _inherit = 'a.model' # direct heritage
 _inherit = ['a.model, 'a.other.model'] # direct heritage
 _inherits = {'a.model': 'field_name'} # polymorphic heritage

For more details about inheritance please have a look at

Inherit [https://www.odoo.com/forum/Help-1/question/The-different-openerp-model-inheritance-mechanisms-whats-the-difference-between-them-and-when-should-they-be-used–46#answer-190]

for fields inheritance please read Field inheritance

Recordset

All instances of Model are at the same time instances of a RecordSet.
A Recordset represents a sorted set of records of the same Model as the RecordSet.

You can call function on recordset:

class AModel(Model):
...
 def a_fun(self):
 self.do_something() # here self is a recordset a mix between class and set
 record_set = self
 record_set.do_something()

 def do_something(self):
 for record in self:
 print record

In this example the functions are defined at model level but when executing the code
the self variable is in fact an instance of RecordSet containing many Records.

So the self passed in the do_something is a RecordSet holding a list of Records.

If you decorate a function with @api.one it will automagically loop
on the Records of current RecordSet and self will this time be the current Record.

As described in Record you have now access to a pseudo Active-Record pattern

Note

If you use it on a RecordSet it will break if recordset does not contains only one item.!!

Supported Operations

RecordSet also support set operations
you can add, union and intersect, ... recordset:

record in recset1 # include
record not in recset1 # not include
recset1 + recset2 # extend
recset1 | recset2 # union
recset1 & recset2 # intersect
recset1 - recset2 # difference
recset.copy() # to copy recordset (not a deep copy)

Only the + operator preserves order

RecordSet can also be sorted:

sorted(recordset, key=lambda x: x.column)

Useful helpers

The new API provides useful helper on recordset to use them in a more functional apprach

You can filter an exisiting recordset quite easily:

recset.filtered(lambda record: record.company_id == user.company_id)
or using string
recset.filtered("product_id.can_be_sold")

You can sort a recordset:

sort records by name
recset.sorted(key=lambda r: r.name)

You can also use the operator module:

from operator import attrgetter
recset.sorted(key=attrgetter('partner_id', 'name'))

There is an helper to map recordsets:

recset.mapped(lambda record: record.price_unit - record.cost_price)

returns a list of name
recset.mapped('name')

returns a recordset of partners
recset.mapped('invoice_id.partner_id')

The ids Attribute

The ids attribute is a special attribute of RecordSet.
It will be return even if there is more than one Record in RecordSet

Record

A Record mirrors a “populated instance of Model Record” fetched from database.
It proposes abstraction over database using caches and query generation:

>>> record = self
>>> record.name
toto
>>> record.partner_id.name
partner name

Displayed Name of Record

With new API a notion of display name is introduced.
It uses the function name_get under the hood.

So if you want to override the display name you should override the display_name field.
Example [https://github.com/odoo/odoo/blob/8.0/openerp/addons/base/res/res_partner.py#L232]

If you want to override both display name and computed relation name you should override name_get.
Example [https://github.com/odoo/odoo/blob/8.0/addons/event/event.py#L194]

Active Record Pattern

One of the new features introduced by the new API is a basic support of the active record pattern.
You can now write to database by setting properties:

record = self
record.name = 'new name'

This will update value on the caches and call the write function to trigger a write action on the Database.

Active Record Pattern Be Careful

Writing value using Active Record pattern must be done carefully.
As each assignement will trigger a write action on the database:

@api.one
def dangerous_write(self):
 self.x = 1
 self.y = 2
 self.z = 4

On this sample each assignement will trigger a write.
As the function is decorated with @api.one for each record in RecordSet write will be called 3 times.
So if you have 10 records in recordset the number of writes will be 10*3 = 30.

This may cause some trouble on an heavy task. In that case you should do:

def better_write(self):
 for rec in self:
 rec.write({'x': 1, 'y': 2, 'z': 4})

or

def better_write2(self):
 # same value on all records
 self.write({'x': 1, 'y': 2, 'z': 4})

Chain of Browse_null

Empty relation now returns an empty RecordSet.

In the new API if you chain a relation with many empty relations,
each relation will be chained and an empty RecordSet should be return at the end.

Environment

In the new API the notion of Environment is introduced.
Its main objective is to provide an encapsulation around
cursor, user_id, model, and context, Recordset and caches

[image: _images/Diagram1.png]
With this adjonction you are not anymore forced to pass the infamous function signature:

before
def afun(self, cr, uid, ids, context=None):
 pass

now
def afun(self):
 pass

To access the environment you may use:

def afun(self):
 self.env
 # or
 model.env

Environnement should be immutable and may not be modified in place as
it also stores the caches of the RecordSet etc.

Modifing Environment

If you need to modifiy your current context you
may use the with_context() function.

self.env['res.partner'].with_context(tz=x).create(vals)

Be careful not to modify current RecordSet using this functionality:

self = self.env['res.partner'].with_context(tz=x).browse(self.ids)

It will modifiy the current Records in RecordSet after a rebrowse and will generate an incoherence between caches and RecordSet.

Changing User

Environment provides an helper to switch user:

self.sudo(user.id)
self.sudo() # This will use the SUPERUSER_ID by default
or
self.env['res.partner'].sudo().create(vals)

Accessing Current User

self.env.user

Fetching record using XML id

self.env.ref('base.main_company')

Cleaning Environment Caches

As explained previously an Environment maintains multiple caches
that are used by the Moded/Fields classes.

Sometimes you will have to do insert/write using the cursor directly.
In this cases you want to invalidate the caches:

self.env.invalidate_all()

Common Actions

Searching

Searching has not changed a lot. Sadly the domain changes
announced did not meet release 8.0.

You will find main changes below.

search

Now seach function returns directly a RecordSet:

>>> self.search([('is_company', '=', True)])
res.partner(7, 6, 18, 12, 14, 17, 19, 8,...)
>>> self.search([('is_company', '=', True)])[0].name
'Camptocamp'

You can do a search using env:

>>> self.env['res.users'].search([('login', '=', 'admin')])
res.users(1,)

search_read

A search_read function is now available. It will do a search
and return a list of dict.

Here we retrieve all partners name:

>>> self.search_read([], ['name'])
[{'id': 3, 'name': u'Administrator'},
 {'id': 7, 'name': u'Agrolait'},
 {'id': 43, 'name': u'Michel Fletcher'},
 ...]

search_count

The search_count function returns the count of results matching search domain:

>>> self.search_count([('is_company', '=', True)])
26L

Browsing

Browsing is the standard way to obtain Records from the
database. Now browsing will return a RecordSet:

>>> self.browse([1, 2, 3])
res.partner(1, 2, 3)

More info about record Record

Writing

Using Active Record pattern

You can now write using Active Record pattern:

@api.one
def any_write(self):
 self.x = 1
 self.name = 'a'

More info about the subtility of the Active Record write pattern here Record

The classical way of writing is still available.

From Record

From Record:

@api.one
...
self.write({'key': value })
or
record.write({'key': value})

From RecordSet

From RecordSet:

@api.multi
...
self.write({'key': value })
It will write on all record.
self.line_ids.write({'key': value })

It will write on all Records of the relation line_ids

Many2many One2many Behavior

One2many and Many2many fields have some special behavior to be taken in account.
At that time (this may change at release) using create on a multiple relation fields
will not introspect to look for the relation.

self.line_ids.create({'name': 'Tho'}) # this will fail as order is not set
self.line_ids.create({'name': 'Tho', 'order_id': self.id}) # this will work
self.line_ids.write({'name': 'Tho'}) # this will write all related lines

When adding new relation records in an @api.onchange method, you can use
the openerp.models.BaseModel.new() constructor. This will create a record that is not committed to the
database yet, having an id of type openerp.models.NewId.

self.child_ids += self.new({'key': value})

Such records will be committed when the form is saved.

Copy

Note

Subject to change, still buggy !!!

From Record

From Record:

>>> @api.one
>>> ...
>>> self.copy()
broken

From RecordSet

From RecordSet:

>>> @api.multi
>>> ...
>>> self.copy()
broken

Create

Create has not changed, except the fact it now returns a recordset:

self.create({'name': 'New name'})

Dry run

You can do action only in caches by using the do_in_draft helper of Environment context manager.

Using Cursor

Record Recordset and environment share the same cursor.

So you can access cursor using:

def my_fun(self):
 cursor = self._cr
 # or
 self.env.cr

Then you can use cursor like in previous API

Using Thread

When using thread you have to create you own cursor
and initiate a new environment for each thread.
committing is done by committing the cursor:

with Environment.manage(): # class function
 env = Environment(cr, uid, context)

New ids

When creating a record a model with computed fields, the records of the recordset will be in memory only.
At that time the id of the record will be a dummy ids of type openerp.models.NewId

So if you need to use the record id in your code (e.g. for a sql query) you should check if it is available:

if isinstance(current_record.id, models.NewId):
 # do your stuff

Fields

Now fields are class property:

from openerp import models, fields

class AModel(models.Model):

 _name = 'a_name'

 name = fields.Char(
 string="Name", # Optional label of the field
 compute="_compute_name_custom", # Transform the fields in computed fields
 store=True, # If computed it will store the result
 select=True, # Force index on field
 readonly=True, # Field will be readonly in views
 inverse="_write_name" # On update trigger
 required=True, # Mandatory field
 translate=True, # Translation enable
 help='blabla', # Help tooltip text
 company_dependent=True, # Transform columns to ir.property
 search='_search_function' # Custom search function mainly used with compute
)

 # The string key is not mandatory
 # by default it wil use the property name Capitalized

 name = fields.Char() # Valid definition

Field inheritance

One of the new features of the API is to be able to change only one attribute of the field:

name = fields.Char(string='New Value')

Field types

Boolean

Boolean type field:

abool = fields.Boolean()

Char

Store string with variable len.:

achar = fields.Char()

Specific options:

	size: data will be trimmed to specified size

	translate: field can be translated

Text

Used to store long text.:

atext = fields.Text()

Specific options:

	translate: field can be translated

HTML

Used to store HTML, provides an HTML widget.:

anhtml = fields.Html()

Specific options:

	translate: field can be translated

Integer

Store integer value. No NULL value support. If value is not set it returns 0:

anint = fields.Integer()

Float

Store float value. No NULL value support. If value is not set it returns 0.0
If digits option is set it will use numeric type:

afloat = fields.Float()
afloat = fields.Float(digits=(32, 32))
afloat = fields.Float(digits=lambda cr: (32, 32))

Specific options:

	digits: force use of numeric type on database. Parameter can be a tuple (int len, float len) or a callable that return a tuple and take a cursor as parameter

Date

Store date.
The field provides some helpers:

	context_today returns current day date string based on tz

	today returns current system date string

	from_string returns datetime.date() from string

	to_string returns date string from datetime.date

:

>>> from openerp import fields

>>> adate = fields.Date()
>>> fields.Date.today()
'2014-06-15'
>>> fields.Date.context_today(self)
'2014-06-15'
>>> fields.Date.context_today(self, timestamp=datetime.datetime.now())
'2014-06-15'
>>> fields.Date.from_string(fields.Date.today())
datetime.datetime(2014, 6, 15, 19, 32, 17)
>>> fields.Date.to_string(datetime.datetime.today())
'2014-06-15'

DateTime

Store datetime.
The field provide some helper:

	context_timestamp returns current day date string based on tz

	now returns current system date string

	from_string returns datetime.date() from string

	to_string returns date string from datetime.date

:

>>> fields.Datetime.context_timestamp(self, timestamp=datetime.datetime.now())
datetime.datetime(2014, 6, 15, 21, 26, 1, 248354, tzinfo=<DstTzInfo 'Europe/Brussels' CEST+2:00:00 DST>)
>>> fields.Datetime.now()
'2014-06-15 19:26:13'
>>> fields.Datetime.from_string(fields.Datetime.now())
datetime.datetime(2014, 6, 15, 19, 32, 17)
>>> fields.Datetime.to_string(datetime.datetime.now())
'2014-06-15 19:26:13'

Binary

Store file encoded in base64 in bytea column:

abin = fields.Binary()

Selection

Store text in database but propose a selection widget.
It induces no selection constraint in database.
Selection must be set as a list of tuples or a callable that returns a list of tuples:

aselection = fields.Selection([('a', 'A')])
aselection = fields.Selection(selection=[('a', 'A')])
aselection = fields.Selection(selection='a_function_name')

Specific options:

	selection: a list of tuple or a callable name that take recordset as input

	size: the option size=1 is mandatory when using indexes that are integers, not strings

When extending a model, if you want to add possible values to a selection field,
you may use the selection_add keyword argument:

class SomeModel(models.Model):
 _inherits = 'some.model'
 type = fields.Selection(selection_add=[('b', 'B'), ('c', 'C')])

Reference

Store an arbitrary reference to a model and a row:

aref = fields.Reference([('model_name', 'String')])
aref = fields.Reference(selection=[('model_name', 'String')])
aref = fields.Reference(selection='a_function_name')

Specific options:

	selection: a list of tuple or a callable name that take recordset as input

Many2one

Store a relation against a co-model:

arel_id = fields.Many2one('res.users')
arel_id = fields.Many2one(comodel_name='res.users')
an_other_rel_id = fields.Many2one(comodel_name='res.partner', delegate=True)

Specific options:

	comodel_name: name of the opposite model

	delegate: set it to True to make fields of the target model accessible from the current model (corresponds to _inherits)

One2many

Store a relation against many rows of co-model:

arel_ids = fields.One2many('res.users', 'rel_id')
arel_ids = fields.One2many(comodel_name='res.users', inverse_name='rel_id')

Specific options:

	comodel_name: name of the opposite model

	inverse_name: relational column of the opposite model

Many2many

Store a relation against many2many rows of co-model:

arel_ids = fields.Many2many('res.users')
arel_ids = fields.Many2many(comodel_name='res.users',
 relation='table_name',
 column1='col_name',
 column2='other_col_name')

Specific options:

	comodel_name: name of the opposite model

	relation: relational table name

	columns1: relational table left column name

	columns2: relational table right column name

Name Conflicts

Note

fields and method name can conflict.

When you call a record as a dict it will force to look on the columns.

Fields Defaults

Default is now a keyword of a field:

You can attribute it a value or a function

name = fields.Char(default='A name')
or
name = fields.Char(default=a_fun)

#...
def a_fun(self):
 return self.do_something()

Using a fun will force you to define function before fields definition.

Computed Fields

There is no more direct creation of fields.function.

Instead you add a compute kwarg. The value is the name of the function as a string or a function.
This allows to have fields definition atop of class:

class AModel(models.Model):
 _name = 'a_name'

 computed_total = fields.Float(compute='compute_total')

 def compute_total(self):
 ...
 self.computed_total = x

The function can be void.
It should modify record property in order to be written to the cache:

self.name = new_value

Be aware that this assignation will trigger a write into the database.
If you need to do bulk change or must be careful about performance,
you should do classic call to write

To provide a search function on a non stored computed field
you have to add a search kwarg on the field. The value is the name of the function
as a string or a reference to a previously defined method. The function takes the second
and third member of a domain tuple and returns a domain itself

def search_total(self, operator, operand):
 ...
 return domain # e.g. [('id', 'in', ids)]

Inverse

The inverse key allows to trigger call of the decorated function
when the field is written/”created”

Multi Fields

To have one function that compute multiple values:

@api.multi
@api.depends('field.relation', 'an_otherfield.relation')
def _amount(self):
 for x in self:
 x.total = an_algo
 x.untaxed = an_algo

Related Field

There is not anymore fields.related fields.

Instead you just set the name argument related to your model:

participant_nick = fields.Char(string='Nick name',
 related='partner_id.name')

The type kwarg is not needed anymore.

Setting the store kwarg will automatically store the value in database.
With new API the value of the related field will be automatically
updated, sweet.

participant_nick = fields.Char(string='Nick name',
 store=True,
 related='partner_id.name')

Note

When updating any related field not all
translations of related field are translated if field
is stored!!

Chained related fields modification will trigger invalidation of the cache
for all elements of the chain.

Property Field

There is some use cases where value of the field must change depending of
the current company.

To activate such behavior you can now use the company_dependent option.

A notable evolution in new API is that “property fields” are now searchable.

WIP copyable option

There is a dev running that will prevent to redefine copy by simply
setting a copy option on fields:

copy=False # !! WIP to prevent redefine copy

Method and decorator

New decorators are just mapper around the new API.
The decorator are mandatory as webclient and HTTP controller are not compliant with new API.

api namespace decorators will detect signature using variable name
and decide to match old signature or not.

Recognized variable names are:

cr, cursor, uid, user, user_id, id, ids, context

@api.returns

This decorator guaranties unity of returned value.
It will return a RecordSet of specified model based on original returned value:

@api.returns('res.partner')
def afun(self):
 ...
 return x # a RecordSet

And if an old API function calls a new API function it will
automatically convert it into a list of ids

All decorators inherits from this decorator to upgrade or downgrade the returned value.

@api.one

This decorator loops automatically on Records of RecordSet for you.
Self is redefined as current record:

@api.one
def afun(self):
 self.name = 'toto'

Note

Caution: the returned value is put in a list. This is not always supported by
the web client, e.g. on button action methods. In that case, you should use
@api.multi to decorate your method, and probably call self.ensure_one()
in the method definition.

@api.multi

Self will be the current RecordSet without iteration.
It is the default behavior:

@api.multi
def afun(self):
 len(self)

@api.model

This decorator will convert old API calls to decorated function to new API signature.
It allows to be polite when migrating code.

@api.model
def afun(self):
 pass

@api.constrains

This decorator will ensure that decorated function will be called on create, write, unlink operation.
If a constraint is met the function should raise a openerp.exceptions.Warning with appropriate message.

@api.depends

This decorator will trigger the call to the decorated function if any of the
fields specified in the decorator is altered by ORM or changed in the form:

@api.depends('name', 'an_other_field')
def afun(self):
 pass

Note

when you redefine depends you have to redefine all @api.depends,
so it loses some of his interest.

View management

One of the great improvement of the new API is that the depends are automatically inserted into the form for you in a simple way.
You do not have to worry about modifying views anymore.

@api.onchange

This decorator will trigger the call to the decorated function if any of the
fields specified in the decorator is changed in the form:

@api.onchange('fieldx')
def do_stuff(self):
 if self.fieldx == x:
 self.fieldy = 'toto'

In previous sample self corresponds to the record currently edited on the form.
When in on_change context all work is done in the cache.
So you can alter RecordSet inside your function without being worried about altering database.
That’s the main difference with @api.depends

At function return, differences between the cache and the RecordSet will be returned
to the form.

View management

One of the great improvement of the new API is that the onchange are automatically inserted into the form for you in a simple way.
You do not have to worry about modifying views anymore.

Warning and Domain

To change domain or send a warning just return the usual dictionary.
Be careful not to use @api.one in that case as it will mangle the
dictionary (put it in a list, which is not supported by the web client).

@api.noguess

This decorator prevent new API decorators to alter the output of a method

Introspection

A common pattern in OpenERP was to do Model fields introspection using _columns property.
From 8.0 _columns is deprecated by _fields that contains list of consolidated fields
instantiated using old or new API.

Conventions

Snake_casing or CamelCasing

That was not clear.
But it seems that OpenERP SA will continue to use snake case.

Imports

As discussed with Raphaël Collet.
This convention should be the one to use after RC1.

Model

from openerp import models

Fields

from openerp import fields

Translation

from openerp import _

API

from openerp import api

Exceptions

from openerp import exceptions

A typical module import would be:

from openerp import models, fields, api, _

Classes

Class should be initialized like this:

class Toto(models.Model):
 pass

class Titi(models.TransientModel):
 pass

New Exceptions classes

except_orm exception is deprecated.
We should use openerp.exceptions.Warning and subclasses instances

Note

Do not mix with built-in Python Warning.

RedirectWarning

Warning with a possibility to redirect the user instead of simply
diplaying the warning message.

Should receive as parameters:

	

	param int action_id:

	 	id of the action where to perform the redirection

	

	param string button_text:

	 	text to put on the button that will trigger
the redirection.

AccessDenied

Login/password error. No message, no traceback.

AccessError

Access rights error.

class MissingError:

Missing record(s)

DeferredException:

Exception object holding a traceback for asynchronous reporting.

Some RPC calls (database creation and report generation) happen with
an initial request followed by multiple, polling requests. This class
is used to store the possible exception occurring in the thread serving
the first request, and is then sent to a polling request.

Note

Traceback is misleading, this is really a sys.exc_info() triplet.

Compatibility

When catching orm exception we should catch both types of exceptions:

try:
 pass
except (Warning, except_orm) as exc:
 pass

Fields

Fields should be declared using new fields API.
Putting string key is better than using a long property name:

class AClass(models.Model):

 name = fields.Char(string="This is a really long long name") # ok
 really_long_long_long_name = fields.Char()

That said the property name must be meaningful. Avoid name like ‘nb’ etc.

Default or compute

compute option should not be used as a workaround to set default.
Defaut should only be used to provide property initialisation.

That said they may share the same function.

Modifing self in method

We should never alter self in a Model function.
It will break the correlation with current Environment caches.

Doing thing in dry run

If you use the do_in_draft context manager of Environment
it will not be committed but only be done in cache.

Using Cursor

When using cursor you should use current environment cursor:

self.env.cr

except if you need to use threads:

with Environment.manage(): # class function
 env = Environment(cr, uid, context)

Displayed Name

_name_get is deprecated.

You should define the display_name field with options:

	compute

	inverse

Constraints

Should be done using @api.constrains decorator in
conjunction with the @api.one if performance allows it.

Qweb view or not Qweb view

If no advance behavior is needed on Model view,
standard view (non Qweb) should be the preferred choice.

Javascript and Website related code

General guidelines should be found:

	https://doc.openerp.com/trunk/web/guidelines/

	https://doc.openerp.com/trunk/server/howto/howto_website/

Compatibility

There is some pattern to know during the transition period to keep code base
compatible with both old and new API.

Access old API

By default, using new API your are going to work on self that is a new RecordSet class instance.
But old context and model are still available using:

self.pool
self._model

How to be polite with old code base

If your code must be used by old API code base,
it should be decorated by:

	@api.returns to ensure adapted returned values

	@api.model to ensure that new signature support old API calls

Unittest

To get access to the new API in unittest inside common.TransactionCase and others:

class test_partner_firstname(common.TransactionCase):

 def setUp(self):
 super(test_partner_firstname, self).setUp()
 self.user_model = self.env["res.users"]
 self.partner_model = self.env["res.partner"]

YAML

To get access to the new API in Python YAML tag:

!python {model: account.invoice, id: account_invoice_customer0}: |
 self # is now a new api record
 assert (self.move_id), "Move falsely created at pro-forma"

Index

 _static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/comment.png

_static/plus.png

_static/ajax-loader.gif

_images/Diagram1.png
RecordSets Record

Envionement. |

Cache

Relation fields

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		Welcome to Odoo new API guideline's

 		Record/Recordset and Model

 		Model

 		Inheritance

 		Recordset

 		Supported Operations

 		Useful helpers

 		The ids Attribute

 		Record

 		Displayed Name of Record

 		Active Record Pattern

 		Active Record Pattern Be Careful

 		Chain of Browse_null

 		Environment

 		Modifing Environment

 		Changing User

 		Accessing Current User

 		Fetching record using XML id

 		Cleaning Environment Caches

 		Common Actions

 		Searching

 		search

 		search_read

 		search_count

 		Browsing

 		Writing

 		Using Active Record pattern

 		From Record

 		From RecordSet

 		Many2many One2many Behavior

 		Copy

 		From Record

 		From RecordSet

 		Create

 		Dry run

 		Using Cursor

 		Using Thread

 		New ids

 		Fields

 		Field inheritance

 		Field types

 		Boolean

 		Char

 		Text

 		HTML

 		Integer

 		Float

 		Date

 		DateTime

 		Binary

 		Selection

 		Reference

 		Many2one

 		One2many

 		Many2many

 		Name Conflicts

 		Fields Defaults

 		Computed Fields

 		Inverse

 		Multi Fields

 		Related Field

 		Property Field

 		WIP copyable option

 		Method and decorator

 		@api.returns

 		@api.one

 		@api.multi

 		@api.model

 		@api.constrains

 		@api.depends

 		View management

 		@api.onchange

 		View management

 		Warning and Domain

 		@api.noguess

 		Introspection

 		Conventions

 		Snake_casing or CamelCasing

 		Imports

 		Model

 		Fields

 		Translation

 		API

 		Exceptions

 		Classes

 		New Exceptions classes

 		RedirectWarning

 		AccessDenied

 		AccessError

 		class MissingError:

 		DeferredException:

 		Compatibility

 		Fields

 		Default or compute

 		Modifing self in method

 		Doing thing in dry run

 		Using Cursor

 		Displayed Name

 		Constraints

 		Qweb view or not Qweb view

 		Javascript and Website related code

 		Compatibility

 		Access old API

 		How to be polite with old code base

 		Unittest

 		YAML

_static/up-pressed.png

_static/down.png

_static/up.png

